Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell ; 187(9): 2236-2249.e17, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38614100

RESUMEN

Unlike those of double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), and ssRNA viruses, the mechanism of genome packaging of dsRNA viruses is poorly understood. Here, we combined the techniques of high-resolution cryoelectron microscopy (cryo-EM), cellular cryoelectron tomography (cryo-ET), and structure-guided mutagenesis to investigate genome packaging and capsid assembly of bluetongue virus (BTV), a member of the Reoviridae family of dsRNA viruses. A total of eleven assembly states of BTV capsid were captured, with resolutions up to 2.8 Å, with most visualized in the host cytoplasm. ATPase VP6 was found underneath the vertices of capsid shell protein VP3 as an RNA-harboring pentamer, facilitating RNA packaging. RNA packaging expands the VP3 shell, which then engages middle- and outer-layer proteins to generate infectious virions. These revealed "duality" characteristics of the BTV assembly mechanism reconcile previous contradictory co-assembly and core-filling models and provide insights into the mysterious RNA packaging and capsid assembly of Reoviridae members and beyond.


Asunto(s)
Virus de la Lengua Azul , Proteínas de la Cápside , Cápside , Microscopía por Crioelectrón , ARN Viral , Empaquetamiento del Genoma Viral , Virus de la Lengua Azul/genética , Virus de la Lengua Azul/fisiología , Virus de la Lengua Azul/metabolismo , Cápside/metabolismo , Cápside/ultraestructura , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/química , Animales , ARN Viral/metabolismo , ARN Viral/genética , Genoma Viral/genética , Ensamble de Virus , Tomografía con Microscopio Electrónico , Virión/metabolismo , Virión/genética , Virión/ultraestructura , Modelos Moleculares , Línea Celular , Cricetinae
2.
Ultramicroscopy ; 257: 113905, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38086288

RESUMEN

We report new advancements in the determination and high-resolution structural analysis of beam-sensitive metal organic frameworks (MOFs) using microcrystal electron diffraction (MicroED) coupled with focused ion beam milling at cryogenic temperatures (cryo-FIB). A microcrystal of the beam-sensitive MOF, ZIF-8, was ion-beam milled in a thin lamella approximately 150 nm thick. MicroED data were collected from this thin lamella using an energy filter and a direct electron detector operating in counting mode. Using this approach, we achieved a greatly improved resolution of 0.59 Å with a minimal total exposure of only 0.64 e-/A2. These innovations not only improve model statistics but also further demonstrate that ion-beam milling is compatible with beam-sensitive materials, augmenting the capabilities of electron diffraction in MOF research.

3.
Structure ; 31(12): 1504-1509.e1, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-37992709

RESUMEN

The combination of high sensitivity and rapid readout makes it possible for electron-counting detectors to record cryogenic electron microscopy data faster and more accurately without increasing the number of electrons used for data collection. This is especially useful for MicroED of macromolecular crystals where the strength of the diffracted signal at high resolution is comparable to the surrounding background. The ability to decrease fluence also alleviates concerns about radiation damage which limits the information that can be recovered from a diffraction measurement. The major concern with electron-counting direct detectors lies at the low end of the resolution spectrum: their limited linear range makes strong low-resolution reflections susceptible to coincidence loss and careful data collection is required to avoid compromising data quality. Nevertheless, these cameras are increasingly deployed in cryo-EM facilities, and several have been successfully used for MicroED. Provided coincidence loss can be minimized, electron-counting detectors bring high potential rewards.


Asunto(s)
Electrones , Microscopía por Crioelectrón , Microscopía Electrónica de Transmisión , Sustancias Macromoleculares/química
4.
Structure ; 31(12): 1499-1503.e2, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-37541248

RESUMEN

Microcrystal electron diffraction (MicroED) is a powerful tool for determining high-resolution structures of microcrystals from a diverse array of biomolecular, chemical, and material samples. In this study, we apply MicroED to DNA crystals, which have not been previously analyzed using this technique. We utilized the d(CGCGCG)2 DNA duplex as a model sample and employed cryo-FIB milling to create thin lamella for diffraction data collection. The MicroED data collection and subsequent processing resulted in a 1.10 Å resolution structure of the d(CGCGCG)2 DNA, demonstrating the successful application of cryo-FIB milling and MicroED to the investigation of nucleic acid crystals.


Asunto(s)
Electrones , Microscopía por Crioelectrón/métodos
5.
Langmuir ; 39(36): 12541-12549, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37647566

RESUMEN

Aberrant levels of glycolipids expressed on cellular surfaces are characteristic of different types of cancers. The oligomer of acylated lysine (OAK) mimicking antimicrobial peptides displays in vitro activity against human and murine melanoma cell lines with upregulated GD3 and GM3 gangliosides. Herein, we demonstrate the capability of OAK to intercalate into the sialo-oligosaccharides of DPPC/GD3 and DPPC/GM3 lipid monolayers using X-ray scattering. The lack of insertion into monolayers containing phosphatidylserine suggests that the mechanism of action by OAKs against glycosylated lipid membranes is not merely driven by charge effects. The fluorescence microscopy data demonstrates the membrane-lytic activity of OAK. Understanding the molecular basis for selectivity toward GD3 and GM3 gangliosides by antimicrobial lipopeptides will contribute to the development of novel therapies to cure melanoma and other malignancies.


Asunto(s)
Gangliósidos , Melanoma , Humanos , Animales , Ratones , Gangliósidos/farmacología , Péptidos Catiónicos Antimicrobianos , Glucolípidos , Transporte Biológico
6.
bioRxiv ; 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37425889

RESUMEN

The combination of high sensitivity and rapid readout makes it possible for electron-counting detectors to record cryogenic electron microscopy data faster and more accurately without increasing the exposure. This is especially useful for MicroED of macromolecular crystals where the strength of the diffracted signal at high resolution is comparable to the surrounding background. The ability to decrease the exposure also alleviates concerns about radiation damage which limits the information that can be recovered from a diffraction measurement. However, the dynamic range of electron-counting detectors requires careful data collection to avoid errors from coincidence loss. Nevertheless, these detectors are increasingly deployed in cryo-EM facilities, and several have been successfully used for MicroED. Provided coincidence loss can be minimized, electron-counting detectors bring high potential rewards.

7.
bioRxiv ; 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37461729

RESUMEN

The small size and flexibility of G protein-coupled receptors (GPCRs) have long posed a significant challenge to determining their structures for research and therapeutic applications. Single particle cryogenic electron microscopy (cryoEM) is often out of reach due to the small size of the receptor without a signaling partner. Crystallization of GPCRs in lipidic cubic phase (LCP) often results in crystals that may be too small and difficult to analyze using X-ray microcrystallography at synchrotron sources or even serial femtosecond crystallography at X-ray free electron lasers. Here, we determine the previously unknown structure of the human vasopressin 1B receptor (V1BR) using microcrystal electron diffraction (MicroED). To achieve this, we grew V1BR microcrystals in LCP and transferred the material directly onto electron microscopy grids. The protein was labeled with a fluorescent dye prior to crystallization to locate the microcrystals using cryogenic fluorescence microscopy, and then the surrounding material was removed using a plasma-focused ion beam to thin the sample to a thickness amenable to MicroED. MicroED data from 14 crystalline lamellae were used to determine the 3.2 Å structure of the receptor in the crystallographic space group P 1. These results demonstrate the use of MicroED to determine previously unknown GPCR structures that, despite significant effort, were not tractable by other methods.

8.
bioRxiv ; 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37163108

RESUMEN

Microcrystal electron diffraction (MicroED) is a powerful tool for determining high-resolution structures of microcrystals from a diverse array of biomolecular, chemical, and material samples. In this study, we apply MicroED to DNA crystals, which have not been previously analyzed using this technique. We utilized the d(CGCGCG) 2 DNA duplex as a model sample and employed cryo-FIB milling to create thin lamella for diffraction data collection. The MicroED data collection and subsequent processing resulted in a 1.10 Å resolution structure of the d(CGCGCG) 2 DNA, demonstrating the successful application of cryo-FIB milling and MicroED to the investigation of nucleic acid crystals.

9.
IUCrJ ; 10(Pt 4): 430-436, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37223996

RESUMEN

In this work, a novel crystal growth method termed suspended drop crystallization has been developed. Unlike traditional methods, this technique involves mixing protein and precipitant directly on an electron microscopy grid without any additional support layers. The grid is then suspended within a crystallization chamber designed in-house, allowing for vapor diffusion to occur from both sides of the drop. A UV-transparent window above and below the grid enables the monitoring of crystal growth via light, UV or fluorescence microscopy. Once crystals have formed, the grid can be removed and utilized for X-ray crystallography or microcrystal electron diffraction (MicroED) directly without having to manipulate the crystals. To demonstrate the efficacy of this method, crystals of the enzyme proteinase K were grown and its structure was determined by MicroED following focused ion beam/scanning electron microscopy milling to render the sample thin enough for cryoEM. Suspended drop crystallization overcomes many of the challenges associated with sample preparation, providing an alternative workflow for crystals embedded in viscous media, sensitive to mechanical stress and/or subject to preferred orientation on electron microscopy grids.


Asunto(s)
Proteínas , Cristalización/métodos , Proteínas/química , Cristalografía por Rayos X , Endopeptidasa K , Microscopía por Crioelectrón/métodos
10.
bioRxiv ; 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37034794

RESUMEN

We have developed a novel crystal growth method known as suspended drop crystallization. Unlike traditional methods, this technique involves mixing protein and precipitant directly on an electron microscopy grid without any additional support layers. The grid is then suspended within a crystallization chamber which we designed, allowing for vapor diffusion to occur from both sides of the drop. A UV transparent window above and below the grid enables the monitoring of crystal growth via light, UV, or fluorescence microscopy. Once crystals have formed, the grid can be removed and utilized for x-ray crystallography or microcrystal electron diffraction (MicroED) directly without having to manipulate the crystals. To demonstrate the efficacy of this method, we grew crystals of the enzyme proteinase K and determined its structure by MicroED following FIB/SEM milling to render the sample thin enough for cryoEM. Suspended drop crystallization overcomes many of the challenges associated with sample preparation, providing an alternative workflow for crystals embedded in viscous media, sensitive to mechanical stress, and/or suffering from preferred orientation on EM grids.

11.
Nat Commun ; 14(1): 1086, 2023 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-36841804

RESUMEN

Crystallizing G protein-coupled receptors (GPCRs) in lipidic cubic phase (LCP) often yields crystals suited for the cryogenic electron microscopy (cryoEM) method microcrystal electron diffraction (MicroED). However, sample preparation is challenging. Embedded crystals cannot be targeted topologically. Here, we use an integrated fluorescence light microscope (iFLM) inside of a focused ion beam and scanning electron microscope (FIB-SEM) to identify fluorescently labeled GPCR crystals. Crystals are targeted using the iFLM and LCP is milled using a plasma focused ion beam (pFIB). The optimal ion source for preparing biological lamellae is identified using standard crystals of proteinase K. Lamellae prepared using either argon or xenon produced the highest quality data and structures. MicroED data are collected from the milled lamellae and the structures are determined. This study outlines a robust approach to identify and mill membrane protein crystals for MicroED and demonstrates plasma ion-beam milling is a powerful tool for preparing biological lamellae.


Asunto(s)
Electrones , Proteínas de la Membrana , Microscopía por Crioelectrón/métodos , Endopeptidasa K , Lípidos/química
12.
J Struct Biol X ; 6: 100078, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36507068

RESUMEN

Microcrystal electron diffraction (MicroED) is a powerful technique utilizing electron cryo-microscopy (cryo-EM) for protein structure determination of crystalline samples too small for X-ray crystallography. Electrons interact with the electrostatic potential of the sample, which means that the scattered electrons carry information about the charged state of atoms and provide relatively stronger contrast for visualizing hydrogen atoms. Accurately identifying the positions of hydrogen atoms, and by extension the hydrogen bonding networks, is of importance for understanding protein structure and function, in particular for drug discovery. However, identification of individual hydrogen atom positions typically requires atomic resolution data, and has thus far remained elusive for macromolecular MicroED. Recently, we presented the ab initio structure of triclinic hen egg-white lysozyme at 0.87 Å resolution. The corresponding data were recorded under low exposure conditions using an electron-counting detector from thin crystalline lamellae. Here, using these subatomic resolution MicroED data, we identified over a third of all hydrogen atom positions based on strong difference peaks, and directly visualize hydrogen bonding interactions and the charged states of residues. Furthermore, we find that the hydrogen bond lengths are more accurately described by the inter-nuclei distances than the centers of mass of the corresponding electron clouds. We anticipate that MicroED, coupled with ongoing advances in data collection and refinement, can open further avenues for structural biology by uncovering the hydrogen atoms and hydrogen bonding interactions underlying protein structure and function.

13.
J Struct Biol ; 214(4): 107886, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36044956

RESUMEN

Microcrystal electron diffraction (MicroED) uses electron cryo-microscopy (cryo-EM) to collect diffraction data from small crystals during continuous rotation of the sample. As a result of advances in hardware as well as methods development, the data quality has continuously improved over the past decade, to the point where even macromolecular structures can be determined ab initio. Detectors suitable for electron diffraction should ideally have fast readout to record data in movie mode, and high sensitivity at low exposure rates to accurately report the intensities. Direct electron detectors are commonly used in cryo-EM imaging for their sensitivity and speed, but despite their availability are generally not used in diffraction. Primary concerns with diffraction experiments are the dynamic range and coincidence loss, which will corrupt the measurement if the flux exceeds the count rate of the detector. Here, we describe instrument setup and low-exposure MicroED data collection in electron-counting mode using K2 and K3 direct electron detectors and show that the integrated intensities can be effectively used to solve structures of two macromolecules between 1.2 Å and 2.8 Å resolution. Even though a beam stop was not used with the K3 studies we did not observe damage to the camera. As these cameras are already available in many cryo-EM facilities, this provides opportunities for users who do not have access to dedicated facilities for MicroED.


Asunto(s)
Electrones
14.
Biophys J ; 121(18): 3533-3541, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35841141

RESUMEN

Cholesterol induces faster collapse by compressed films of pulmonary surfactant. Because collapse prevents films from reaching the high surface pressures achieved in the alveolus, most therapeutic surfactants remove or omit cholesterol. The studies here determined the structural changes by which cholesterol causes faster collapse by films of dipalmitoyl phosphatidylcholine, used as a simple model for the functional alveolar film. Measurements of isobaric collapse, with surface pressure held constant at 52 mN/m, showed that cholesterol had little effect until the mol fraction of cholesterol, Xchol, exceeded 0.20. Structural measurements of grazing incidence X-ray diffraction at ambient laboratory temperatures and a surface pressure of 44 mN/m, just below the onset of collapse, showed that the major structural change in an ordered phase occurred at lower Xchol. A centered rectangular unit cell with tilted chains converted to an untilted hexagonal structure over the range of Xchol = 0.0-0.1. For Xchol = 0.1-0.4, the ordered structure was nearly invariant; the hexagonal unit cell persisted, and the spacing of the chains was essentially unchanged. That invariance strongly suggests that above Xchol = 0.1, cholesterol partitions into a disordered phase, which coexists with the ordered domains. The phase rule requires that for a binary film with coexisting phases, the stoichiometries of the ordered and disordered regions must remain constant. Added cholesterol must increase the area of the disordered phase at the expense of the ordered regions. X-ray scattering from dipalmitoyl phosphatidylcholine/cholesterol fit with that prediction. The data also show a progressive decrease in the size of crystalline domains. Our results suggest that cholesterol promotes adsorption not by altering the unit cell of the ordered phase but by decreasing both its total area and the size of individual crystallites.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina , Surfactantes Pulmonares , 1,2-Dipalmitoilfosfatidilcolina/química , Colesterol/química , Presión , Surfactantes Pulmonares/química , Tensoactivos
15.
Nat Methods ; 19(6): 724-729, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35637302

RESUMEN

Structures of two globular proteins were determined ab initio using microcrystal electron diffraction (MicroED) data that were collected on a direct electron detector in counting mode. Microcrystals were identified using a scanning electron microscope (SEM) and thinned with a focused ion beam (FIB) to produce crystalline lamellae of ideal thickness. Continuous-rotation data were collected using an ultra-low exposure rate to enable electron counting in diffraction. For the first sample, triclinic lysozyme extending to a resolution of 0.87 Å, an ideal helical fragment of only three alanine residues provided initial phases. These phases were improved using density modification, allowing the entire atomic structure to be built automatically. A similar approach was successful on a second macromolecular sample, proteinase K, which is much larger and diffracted to a resolution of 1.5 Å. These results demonstrate that macromolecules can be determined to sub-ångström resolution by MicroED and that ab initio phasing can be successfully applied to counting data.


Asunto(s)
Electrones , Sustancias Macromoleculares/química
16.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34873060

RESUMEN

The relationship between sample thickness and quality of data obtained is investigated by microcrystal electron diffraction (MicroED). Several electron microscopy (EM) grids containing proteinase K microcrystals of similar sizes from the same crystallization batch were prepared. Each grid was transferred into a focused ion beam and a scanning electron microscope in which the crystals were then systematically thinned into lamellae between 95- and 1,650-nm thick. MicroED data were collected at either 120-, 200-, or 300-kV accelerating voltages. Lamellae thicknesses were expressed in multiples of the corresponding inelastic mean free path to allow the results from different acceleration voltages to be compared. The quality of the data and subsequently determined structures were assessed using standard crystallographic measures. Structures were reliably determined with similar quality from crystalline lamellae up to twice the inelastic mean free path. Lower resolution diffraction was observed at three times the mean free path for all three accelerating voltages, but the data quality was insufficient to yield structures. Finally, no coherent diffraction was observed from lamellae thicker than four times the calculated inelastic mean free path. This study benchmarks the ideal specimen thickness with implications for all cryo-EM methods.


Asunto(s)
Benchmarking/métodos , Microscopía por Crioelectrón/métodos , Manejo de Especímenes/métodos , Animales , Cristalización/métodos , Cristalografía , Electrones , Humanos , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Modelos Moleculares
17.
STAR Protoc ; 2(3): 100686, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34382014

RESUMEN

We present an in-depth protocol to reproducibly prepare crystalline lamellae from protein crystals for subsequent microcrystal electron diffraction (MicroED) experiments. This protocol covers typical soluble proteins and membrane proteins embedded in dense media. Following these steps will allow the user to prepare crystalline lamellae for protein structure determination by MicroED. For complete details on the use and execution of this protocol, please refer to Martynowycz et al. (2019a, 2020a).


Asunto(s)
Microscopía por Crioelectrón/métodos , Cristalización/métodos , Microscopía Electrónica de Transmisión/métodos , Cristalografía por Rayos X/métodos , Electrones , Cuerpos Lamelares/química , Modelos Moleculares , Conformación Proteica , Proteínas/química
18.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34462357

RESUMEN

G protein-coupled receptors (GPCRs), or seven-transmembrane receptors, are a superfamily of membrane proteins that are critically important to physiological processes in the human body. Determining high-resolution structures of GPCRs without bound cognate signaling partners, such as a G protein, requires crystallization in lipidic cubic phase (LCP). GPCR crystals grown in LCP are often too small for traditional X-ray crystallography. These microcrystals are ideal for investigation by microcrystal electron diffraction (MicroED), but the gel-like nature of LCP makes traditional approaches to MicroED sample preparation insurmountable. Here, we show that the structure of a human A2A adenosine receptor can be determined by MicroED after converting the LCP into the sponge phase followed by focused ion-beam milling. We determined the structure of the A2A adenosine receptor to 2.8-Å resolution and resolved an antagonist in its orthosteric ligand-binding site, as well as four cholesterol molecules bound around the receptor. This study lays the groundwork for future structural studies of lipid-embedded membrane proteins by MicroED using single microcrystals that would be impossible with other crystallographic methods.


Asunto(s)
Microscopía por Crioelectrón/métodos , Nanopartículas/química , Receptores Acoplados a Proteínas G/química , Receptores Purinérgicos P1/química , Humanos , Lípidos/química , Conformación Proteica
19.
Methods Mol Biol ; 2302: 137-151, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33877626

RESUMEN

Microcrystal electron diffraction (MicroED) enables atomic resolution structures to be determined from vanishingly small crystals. Soluble proteins typically grow crystals that are tens to hundreds of microns in size for X-ray crystallography. But membrane protein crystals often grow crystals that are too small for X-ray diffraction and yet too large for MicroED. These crystals are often formed in thick, viscous media that challenge traditional cryoEM grid preparation. Here, we describe two approaches for preparing membrane protein crystals for MicroED data collection: application of a crystal slurry directly to EM grids, and focused ion beam milling in a Scanning Electron Microscope (FIB-SEM). We summarize the case of preparing an ion channel, NaK, and the workflow of focused ion-beam milling. By milling away the excess media and crystalline material, crystals of any size may be prepared for MicroED. Finally, an energy filter may be used to help minimize inelastic scattering leading to lower noise on recorded images.


Asunto(s)
Cristalografía por Rayos X/métodos , ATPasa Intercambiadora de Sodio-Potasio/química , Microscopía Electrónica de Transmisión , Modelos Moleculares , Peso Molecular , Conformación Proteica , Flujo de Trabajo
20.
J Vis Exp ; (169)2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33779618

RESUMEN

A detailed protocol for preparing small molecule samples for microcrystal electron diffraction (MicroED) experiments is described. MicroED has been developed to solve structures of proteins and small molecules using standard electron cryo-microscopy (cryo-EM) equipment. In this way, small molecules, peptides, soluble proteins, and membrane proteins have recently been determined to high resolutions. Protocols are presented here for preparing grids of small-molecule pharmaceuticals using the drug carbamazepine as an example. Protocols for screening and collecting data are presented. Additional steps in the overall process, such as data integration, structure determination, and refinement are presented elsewhere. The time required to prepare the small-molecule grids is estimated to be less than 30 min.


Asunto(s)
Microscopía por Crioelectrón/métodos , Electrones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...